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FAST CONVOLUTION BY NUMBER THEORETIC TRANSFORMS

INTROlT JCTION

Many signal processing applications previously performed by continuous systems can
now be satisfied by means of discrete systems described by digital signal processing theory.
A description of this theory appears in Ref. 1, which is considered necessary background
to the material discussed here. As a result of investigation into digital signal processing
theory, several factors become apparent. Although discrete convolution is a basic means
of discrete system representation, its application to real-time processing is limited because
of the number of arithmetic operations involved in its computation. The arithmetic
round-off error inherent in the practical implementation of discrete systems generates
noise in the output of digital signal processing systems. The application of number
theoretic concepts utilizing modular arithmetic to the computation of discrete convolu-
tion under certain conditions provides some degree of solution to these limitations. It is
these concepts in the form of number theoretic transforms (NTTs) which are discussed in
this report.

DISCRETE CONVOLUTION

The output of any linear time-invariant discrete system can be expressed most
generally in the form of the convolution sum or discrete convolution

00

y(n) h(k)x(n - k).
k=-oo

Here x(n) is the input sequence, h(n) is the unit-sample (impulse) response of the system
and y(n) is the output sequence. In practical applications discrete convolution must be
expressed in a finite form

N-1
y(n) = 2 h(k)x(n - Iv) = h(n) * x(n)

k=o

where the unit-sample response is finite or can be suitably approximated as such. Evalua-
tion of this sum requires a total of N2 multiplications, which gives some measure of
computational complexity. Discrete convolution can be applied to systems of infinite
unit-sample response, but sectioning [2,3] or block recursion techniques [4,51 must be

Note: This report represents a part of the research performed under the Edison Memorial Fellowship in
partial fulfillment of the requirements for the degree of Doctor of Science at the George Wash-
ington University School of Engineering and Applied Science.

Manuscript submitted July 29, 1975.
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LAWRENCE M. LEIBOWITZ

used. In sectioning, 'the system output is expressed as a sum or sequence of finite con-
volutions. With block recursion, the input, output, and unit-sample response are parti-
tioned into blocks of finite length and the system is represented by convolution in I

matrix form, The discrete convolution form of discrete system representation has been
generally limited to the realization of finite unit-sample response, or FIR, filters.

A discrete convolution may be efficiently computed by application of the discrete .
form of the convolution theorem [6j, whereby convolution in the time domain corre-
sponds to multiplication in the frequency domain, using. methods proposed by Ptockham
[2]. The discrete Fourier transform (DFT) [7],

N-1
x(k) 21 x(n)Wkn, WNeJ( 2 ,FNY o) h•N-1, .

n=0

is applied in the form of the fast Fourier transform (FFT) F8,9] to translate the input
and unit-sample response sequences to the frequency domain as X(k) and H(kX respec-
tively. The FFT computation of each DFT requires on the order of N log2 N complex
multiplications as opposed to N2 for direct evaluation. The FFT algorithms most gen-
erally require that N be an integral power of 2, but other forms for highly composite N
are available. The iscrt c luion is obti as th e ti*1e '.AL 1Vyt aui1ri, in
inverse discrete Fourier transform (IDFT},

N-1X
yi(n) =. Y(k)W-kll a N-1 f 

IV

applied in the form of the FFT, of the frequency-domain product Y(k) = X(k)H(k). The
resulting convolution is termed a circular convolution, as the DFT is applicable only to-
periodic functions; thus, the sequences to be convolved must be represented as periodiucally
extended with discrete sample indices evaluated modulo N. (Modulo evaluation is defined V
in the section on Arithmetic Modulo M.)

Circular convolution can be used to nerform linear convolution of a Deriodic I
sequence by appending sufficient zero-valued samples to each of the sequences to be
convolved as necessary to avoid periodic interference, or overlap, error. To convolve a
sequence of length P with a sequence of length Q, using a power of 2 FFT, requires that
enough zero-valued samples be appended such that N = 2m > P + Q - 1. Since, in
general, the convolution computation requires two transforms, a multiplication of se-
quences and an inverse transform, the number of complex multiplications is on the order
of 3N log2 N + N as compared to N2 for direct evaluation. For N > 32, FFT convolu-
tion is much more efficient than direct evaluation.

The discrete form of correlation is

N-1
y(n) = 7 h(k)x(n + kv),

k=O
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and because of the similarity in form, the above discussion for discrete convolution ap-
plies with minor differences [7]. Thus, efficient computational schemes with respect to
discrete convolution are important. They are applicable to realization of both FIR and
infinite impulse response (IIR) digital filters [3] as well as the statistical analysis of sig-
nals including autocorrelation and spectral estimation [10].

Because of the finite representation of all quantities represented in a digital electronic
computing device, all discrete convolution and correlation computations will generally
possess some error due to roundoff. There are also additional errors caused by the finite
quantization of the signal and unit-sample response sequences. This quantization error in
the input sequences is independent of the computation algorithm used. In the FFT reali-
zation of discrete convolution, the resulting arithmetic roundoff error or noise in the out-
put is primarily dependent on that generated in each of the three applications of the FFT.
The output noise due to arithmetic roundoff in the FFT has been analyzed both for
fixed- [11 ] as well as floating-point [12-14] number representations. In the fixed-point
case, with proper scaling to prevent overflow, the upper bound on noise-to-signal ratio is
found to increase as /R; or 1/2 bit per stage, where the number of stages is m = log2 N.
The floating-point implementation round-off error analyses indicate noise-to-signal ratios
increasing linearly with m for fixed mantissa length.

From the above discussion it can be seen that discrete convolution and correlation
are powerful tools in digital signal processing applications and can be readily and effi-
ciently implemented by FFT techniques. However, the amount of computation required
even with EFT convolution is still significant, and the use of these techniques is limited
in many applications such as communications and radar where real-time processing is a
requirement. Another limitation of FFT convolution is the output noise caused by
required roundoff in the arithmetic processes. This noise can become quite significant for
large values of N.

In recent years, several transform techniques have been proposed to more efficiently
compute discrete convolutions. One such technique [15] involves the Walsh transform
and requires 2"3m-1 multiplications. This technique still involves round-off error and is
slower than FFT convolution for N > 29. The main drawback of this technique is that
the results of all intermediate computations must be maintained in memory in order to
make the final computation. For N = 29 this would require 13,122 storage locations for
each sequence to be convolved. More recently, another class of transform techniques,
which involve number theory and under certain conditions overcome many of the limita-
tions of FFT convolution, has been proposed [16-201 and will be considered here.

THE DFT IN A FINITE FIELD OR RING

The DFT, implemented in the form of the FFT, is important in the efficient com-
putation of discrete convolution and correlation. If a = WN = exp (- ]27r/N), the form of
a DFT of a sequence x(n), n 0, 1, ..., N - 1 can be expressed as

N-1
X~k) . x~nto, k = O. 1, ..., N -n1.

n=u

3
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LAWRENCE M. LEIBOWITZ

If values of a other than the complex, roots of unity are considered, other transforms may
exist which can be said to be of this DFT form. Of these transforms it is those which
possess the circular convolution property (CCPM (i.e., that the product of the transQfnrmn'
of two sequences is the transform of their circular convolution), which are of interest
here. It will be shown here that the properties generally required of such transforms,
when defined in a field, are that ax be of order N that is N is the least positive integer A 
such that aN = 1, and that N-1 be defined [181.

The DFT with a = exp (- j2ir/N) is the only transform defined in the field of eomi
plex numbers that possesses the CCP [18]. Pollard [16] defined the DFT in a finite field
as well as in the ring of integers modulo an integer M where there are constraints on a In
addition to that mentioned above. Such a rine, denoted ZJA'. consists of the set of inte-
gers {0, 1, ..., M - 1} with addition, subtraction, and multiplication modulo M. A ring of
integers modulo M is a field only if multiplicative inverses exist for all nonzero elements
and thus division is defined, since bla = bacr. This is the case only for M a prime. A
field then is a special case of a ring and can, in general, be referred to as a ring of inte-
gers modulo M.

The transforms considered here are termed number theoretic transforms (NTT). In
order for such transforms and their inverses to exist, there is a set of constraints that
must ibe s nti fi- m ng -- e rnoots of -nity Ae convolution length NT and -onnAielhiieM 

±14.AO MJ OGL1Oi.At CLLJ$LA11 UL143 TWJLUO 'S4 14111U.. ~J1t 1U JA *Il
5

UfAA g 4IA 1.t 4t4Q -A.

There are many different NTTs that can be defined in various fields and rings. For cer-
tain values of a, N, and M it is possible to compute transforms in a highly efficient man-
ner with each multiplication replaced by a single binary word shift and an addition. Thus,
in effect, no multiplications are required. Also, if N is highly composite, an FFT type of
algorithm can be applied to further reduce the amount of computation required. It is
those NTT for which possibilities of efficient computation, relative to FFT convolution,
exist that are of primary interest here. Another important reason for interest in these .1
transforms is that round-off or truncation and associated errors, inherent in normal arith-
metic, have no meaning in modulo arithmetic. All data and results are exactly reprem neid
among a finite set of quantities. Thus there is no noise from arithmetic roundoff in the
outputs of convolutions implemented by means of NTT, provided certain conditions, to
be given later, are met. In addition, unlike the powers of WN used in the FFT, for cea-
tain va1ues of a' t.hnre is no need to store the basis functions (nowers of co) of the NTT.

Practical applications of discrete convolution, in digital signal processing, invowe
amplitude data that do not generally belong to a finite field or ring. How then does the
existence of transforms with the CCP in finite fields or rings aid in the computation of
convolution in digital filtering and other practical areas of interest? Any realizable digMtaW
machine must have finite storage capabilities and finite word size for input data samples
or computation results. Thus in practical applications it is always necessary to represent
input and output data within a bounded set of numbers of finite representation. If the
irin, if 4c scalnA and fIe raesilfiing nolutnut+ ia nnrvnnrtniirtliriny rncraled +then All latan cnomnnte-.

tion within a digital machine can be represented as being performed on a finite set of
integers. With suitable modulo arithmetic defined to satisfy closure, this set of integers
forms a subset of a finite field or ring to which NTT concepts may be applied.

To have all required input and output quantities representable, they must belong to
Of. Thus, with inclusion of signed numbers, it is necessary that the convolved sequences
h(n) and x(n) be properly scaled so that

4
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Iy(n) I c 2A
2

where y(n) = h(n) * x(n), in a manner similar to overflow constraints in fixed-point
arithmetic. More generally, the range of y(n) must be limited to an interval of less than
M. Without this scaling, aliasing in amplitude, which is analogous to the aliasing in the
frequency domain associated with discrete time representations, can occur. With proper
scaling the results of convolution in the ring of integers modulo AM are the same as these
with ordinary arithmetic [18].

ARITTTMFTIfl MOflITfL M

Prior to presenting a definition of the NTT we will need to discuss applicable arith-
metic modulo M properties from number theory. This modular arithmetic also provides
the basis for a discussion of conveniently applied conditions on the roots of unity a, con-
volution length N, and modulus M.

The number theory utilized with respect to the NTT is available in any basic book
on the subject, such as Refs. 21 and 22. If

ab=7+ kM, 0<b<AM-1,

then a is said to be congruent to b modulo M. It can be seen that b is the remainder
when a is divided by AM. This congruence relation is often also represented as a Ab, a = b
mod M, or ((a)) = b. Any integer is congruent modulo M to exactly one integer in the
ring ZM, which was described previously. In general, modular arithmetic includes addi-
tion, subtraction, and multiplication. Division exists only if the inverse of the particular
divisor exists. The results of all arithmetic must be expressed as a quantity within ZM by
means of a residue reduction. Within the above limitations modular arithmetic obeys the
commutative, associative, and distributive laws and includes the identity, arithmetic in-
verse, closure, and analogy properties [19; 21, Ch. 9].

The basic approach to computation of circular convolution via the NTT is that as
long as the final results can be properly represented within the quantities available in ZM,
the final congruence relation will represent an equality with the convolution results using
ordinary arithmetic. Thus, in spite of overflows during intermediate steps of the compu-
tation, the results modulo M will be the same as those obtained by ordinary arithmetic.
This same philosophy is used quite commonly with respect to l's and 2's complement
binary arithmetic.

Easily applied relationships among at, N, and M can be developed in order to prop-
erly utilize the number theoretic transform. If the requirement is to perform a particular
convolution on a specified digital machine, these relationships can be used to select the
most efficient NTT. Using number theory, we will consider such relationships here.

An important consideration in rings of integers modulo M is the existence of the
inverse of a quantity p belonging to ZM. An inverse of p exists in ZM if and only if p
and M are relatively prime [19; 22, p. 511. The existence of an inverse transform will

5
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require that a have an inverse. Thus a and M must be relatively prime, expressed as
(a, M) = 1. Likewise, for N- 1 to exist, (N, M) = 1.

For (a, M) 1, let so(M) be the number of integers in ZM relatively prime to M. If
the unique prime factors of M are such that M = pepr2 ... pa2 , then ip(M) = M(1 - lp l )
(1p- li 2 ... (1 - 1pP) [21, p. 1111. It can be shown that

- - iA Al, 7L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 11.'%
which is known as Euler's theorem [21, Ch. 12].

Analogous to the DFT, the powers of a mod MA must form a sequence of period N
with aN - 1 mod M. From Euler's theorem it can be seen that the powers of a will be
periodic with period of at most ,p(M). For M a prime, 9p(M) = M - 1 and

a~l l ]Imod M,

which is known as Fermat's theorem. For certain values of a, known as primitive roots, I,,

the period will equal ,p(M)) Thus the powers of a primitive root generate the total set of
nonzero elements in ZM [20]. For composite AM, the period of the sequence of powers
of a will be less than M - 1. The period is the smallest N for which aN = 1 mod AM.
Since ep(M) > N, p(M) can be represented as ep(M) = aN + b where 0 < b < N. If we -
apply Euler's theorem, o+b = 1 mod M, and since tN = 1 mod M, ab = 1 mod M. 
Since N is the smallest integer for which aN = 1 mod M, b must be 0 and therefore .?
Nbp(M). Fj

If M has the unique prime power factorization MA plp 2 ... pr, with pF distinct
primes, it can be shown [181 that a necessary and sufficient condition for a transform of
the DFT form with the COP property to exist is N[0(M) where 0(M) 4 ge-d fp,- 1> pip 17
.., Pk- 1}. Thus the maximum transform length is Nmj = 0(M) [201.

NUMBER THEORETIC TRANSFORM

If +he NTTP s expresseC a s

N-1
X(k) =Lx(n)unk, k = . , I N - 1, :J

an inverse transform can be defined as

N-1i
Nun = NT1 v' V(lr,r-lnk n 1 Nt 

t } X, s v ~~*~ \'*a, , .. A, _,..... iV - 1 
k=o

where the exponents of 0a can be evaluated mod N, since aN = 1 mod M, and all other
arithmetic is performed mod M. The inverse transform relation is of course valid only
insofar as it can be shown to produce the original sequence-x(n) from-the-NTT-sequence
X(k). This can be shown by substituting the transform sum into the inverse transform
expression, as follows [161:

6
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N-1 N 1-1\
Wan) =A-' T~ E Ex(mroea ) Q~n, n = 0, 1, .- 1.

k-0 \m=0

Interchanging the order of summation results in

N-1 1

)X(n) a X(m) 1 7E a(m-n).

m =0 k=O

Let i = m - n and consider the cases i = 0 mod N and i # 0 mod N. First it is obvious
that

N -1

N-' L +k = 1 i i = 0 mod N.
k=o

Second, since

N-1
(1 -ai)N' L #k = N-' (1 - aNi) - 0, i 40 0 mod N

k=O

it follows that if (1 - ai) has a multiplicative inverse, then

N-1
N- 1 E ceik = 0, ii O modN

k=O

and X(n) = x(n). Thus the inverse NTT, presented above, is indeed valid.

From the above consideration of the relation between the NTT and its inverse,
several restraints on a, N, and M are apparent. In satisfying the transform pair relation-
ship, it was necessary that a be a root of unity of order N and the multiplicative inverses
of a, N, and 1 - oai, i # 0 mod N, exist. It was shown here earlier that, in a ring of inte-
gers modulo an integer M, a quantity p has a multiplicative inverse only if (p, M) = 1.
Thus the restraints on a, N, and M can be listed as

ar?= 1 mod M, with N the smallest such integer,

(N, M) -1,

(1-a',AM) 1, i=O0modN.

It is important to note that the NTT itself provides no meaningful information and
its usefulness is only with respect to the CCP property. Consider two sequences a(n),
b(n) with NTTs A(k), B(k). If C(k) = A(k)B(k), then

I -I

c(n) = -' E A(k)B(k)a7n4

k=0

7
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or

N-1 / N-1
c~n) = N` L ( LHn\ r a os A

a(m)a"'" )
/ N-1

A i b(2)tt ' ) Fk
n o_ te=u \mtmu / \JX=U

If the commutative, associative, and distributive laws are assumed to hold in the field or A ij
ring under consideration, then

N-i N-1
c 21E (m)b(2)
tn=O 2=0

N-1 )

k=O

Use of the results for

N -1

k=0

as defined earlier with respect to the NTT and its inverse results in

N-121 a(m+Q-n)k - 1, - m modN

k =0

-i 6
.1'~

*CIX

.1

1?- 

. .:, .'

which is otherwise 0. Therefore, with the same restraints on a, N, and M presented
earlier,

2-1
cfn) =N- a(m)b(n-mmodN).

Thus c(n), the inverse NTT of the product of the NTTs of a(n) and b(n), is shown to be
congruent to the circular convolution of a(n) and b(n). If [a(n)I, lb4n)l are scaled so a ft
Lc(n) I < Ml2, then the results of the NTT convolution modulo M will be equivalent to 7_-t
those of circular convolution computed directly with ordinary arithmetic.

1-E
MODULUS MA

From the discussion up to this point, it can be seen that given a modulus M the
possible lengths N for an NTT circular convolution are exactly those for which N[Q(M)
with Nmne = 0(M). In determining the particular NTT to apply in a given situationi the
most convenient approach would be to choose M and then determine N and a4. In con-
sidering these parameters of the NTT, we must consider the efficiency of the computa-
tion in relationship to other methods of achieving circular convolution. The present dis-
cussion is directed toward implementation of the NTT on a binary computing device.

Several factors must be considered in choosing M. Its value should provide a binary
word length large enough to contain the results of the convolution. For example, if two

8
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sequences of length N with maximum amplitudes represented within b bits are convolved,
then log2 M > 26 + log2 N. The form of M should be such that residue reduction is a
simple operation not requiring division.

Having chosen M, the corresponding value of N should ideally be a power of 2
or at least highly composite so that the efficiency of an FFT algorithm can be applied to
the computation. Finally, the value of a should provide for simple operations in imple-
moenig bminar multiplicatinns y nnwersi of a. If a equals 2 or a nower of 2. then
multiplications by powers of a correspond to bit shifts. Other values of a such as -2 and
N2 can also be used with some slight increase in computing complexity.

To perform arithmetic modulo M we must perform a residue reduction on the re-
sult of each computation. However, to also keep the required word size and overall
storage requirements to a minimum, we must perform a residue reduction, as necessary,
after all intermediate computations as well. Thus the efficiency with which residue re-
duction can be accomplished is an important consideration in choosing M. The simplest
mnndiln'a for this npirnnpe would he of the form 2bV where h is any nositive integer. and

residue reduction only involves retaining the b least significant bits. However, since 2 is
a prime factor, Nmax = 1 and 2b is thus useless as a modulus. It is thus apparent that in
order to attain any practical sequence lengths, M must be odd.

Next, a modulus of the form 2b- 1 is considered. The most interesting sequence
lengths, in relation to word length, occur for b a prime. Numbers of the form Mp = 2P
1, p a prime, are known as Mersenne numbers and are of interest, since 2P = 1 mod MP
and thus a = 2 is a root of unity. Number theoretic transforms with modulus Mp (desig-
nated Mersenne number transforms (MNTs)) were first proposed by Rader [17] . Rader
also showed that MNTs of N = 2p with a = -2 also exist. Arithmetic modulo Mp is quite
simple. Residue reduction involves only adding the word formed by the bits beyond the
p least significant bits to the word formed by the p least significant bits, since 2P 1,
2 2P 2, etc. The limitation of the MNT, however, is that the values of N are not very
composite and thus do not lend themselves to FFT computation procedures.

Consider a modulus of the form 2b + 1. For b odd, 312b + 1, and Nmax = 2.
Therefore b must be even. It is found that an NTT with a modulus of the form t =

2b + 1, b = 2 t, known as a Fermat number, is of the most interest and is known as a
Fermat number transform (FNT). Transforms in a ring of integers modulo a Fermat
number were first suggested by Rader [17]. These transforms were considered by
Agarwal and Burrus [18,20], who defined them mathematically and discussed their imple-
mentation and application to discrete convolution. The Ft are prime for t = 0, 1, ..., 4
and factorable with a prime factor of the form K2t+2 + 1 for t > 4 [18]. Thus for
t < 4, 0(Ft) = 2b, b = 2t, and valid NTT exist for all 2C, c < b. For t > 4, 2t+2
10(Ft) and valid NTT result for all N = 2c, c < t + 2. For t = 5,6 which correspond to
many practical signal processing applications, NmaX = 0(Ft) = 2fr2 = 46 [18]. Thus, for
the FNT, the resulting N are practical values that are integral powers of 2. Therefore, an
FFT type of computational procedure exists. This procedure can be any one of the avail-
able FFT algorithms [9] with powers of exp(- j2ir/N) replaced by powers of ae.

Since Ft = 2b + 1, it follows that 2b = - 1 mod Ft. Then 22b = 1 mod Ft and
(V/2)4b = 1 mod Ft [181. Therefore, N = 2b requires that a = 2, and N = 46 corresponds
to a = a/¶. In the FNT, with an FFT realization, computation with a = /2 requires only

9
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a small increase in complexity, since odd powers of a would occur in either the first or
the last stage of a particular FFT algorithm. It can be seen that the word length required
for the FNT is b + 1. The most significant bit is required only to represent 2b. Residue
reduction is achieved in a manner similar to that described earlier for the MNT. However,
since 2b = - 1 mod M, the word formed from the quantity beyond the b least significant 
bits is subtracted from the word formed by the b least significant bits.

In the present discussion the Drimary interest is in the FNT with an a of 2. or an
integer power of 2, which is known as the Rader transform (RT). The RT, with a 2
and N = 2m, is defined as follows:

N-1
X(k) =Lxfn)2'h mod Ft, .k =0, 1, ., N - 1, .

n=O0
N-1 .... 1

xfn) -2'm X(k)2nk mod Ft, n= 0,1, .. ,N- 1.

The RT appears to be the optimum NTT that results from all those available among the
various M. In addition to the general advantages of the NTT due to N that are integral
powers of 2, in the RT all multiplications by powers of a involve powers of 2. Thus
these multiplications are each performed by a simple binary word shift followed by a sub-
traction if a residue reduction is required.

IMPLEMENTATION OF FNT

The FNT has been described here and was shown to involve a modulus of the form;
Ft = 2b + 1, b = 2V. Thus the word length required for computation must be such that
all integers from 0 to 2b can be represented. This necessitates a word length of b + 1
bits. The most significant bit will be used only to represent 2b when it occurs either in
the data or in a computation result. Therefore, implementation of the FNT with b-bit
arithmetic will result in some small input quantization error because of the need to
approximate a data input sample of -1 by the closest available values, 0 or -2. If the
value 2b occurs as the result of a computation. all output data for the particular section i
or data block involved will be meaningless. For most applications the probability of such
an occurrence is small enough to be acceptable. Agarwal and Burrus [18) investigated
the implementation of the various arithmetic modulo Ft operations required for an FNT
with a word length of b bits, describing the required operations as follows:

1. Negation
Complement each bit and add 2 to the result,

2. Addition
Add the two b-bit integers and end-around subtract any carry bit.

3. Subtraction
Negate the subtrahend and add the result to the minuend.

10
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4. General Multiplication
Multiply and get CL + CH2b, where CL and CH are words formed from the b
least and most significant bits, respectively. From CL subtract CH modulo Ft.

5. Multiplication by a power of 2
Use double register of length 26
To multiply by 2 k:

Load data in lower half of 2b-bit double register.
Shift left k positions and from CL subtract CH modulo Ft.

To multiply by 2 -k:
Load data in upper half of 2b-bit double register.
Shift right k positions and from CfH subtract C1 modulo Ft.

It should be noted that in the RT, the powers of ae need not be stored or even computed.
The exponents, which can be determined from the position in the procedure, are the bit
shifts needed to accomplish the multiplications required in the transform.

TRANSFORM LENGTH LIMITATIONS

The transform lengths for the NTT, and thus the lengths of circular convolutions
that can be achieved, are proportional to the word length b. Thus to consider long trans-
form lengths requires that a large word size be used in performing computations. Table 1
indicates, for various practical values of b, the available values of N corresponding to a
2 (RT) and a = 2 as well as the N,_ 0 and related a. It can be seen that in order to
achieve a transform of length N = 128, using the RT, a word length of 64 bits is required.
For applications using a minicomputer, such a word length would be totally restrictive. It
would, however, be possible to work with such transform lengths, with some storage and
speed inefficiencies, on a 32-bit machine with double precision such as the IBM 360 or
370 series. In the case of a special purpose machine where it was most important to
accomplish such transform lengths, the long word lengths might be acceptable.

Table 1 - Circular Convolution Lengths for Various Word Lengths*

Convolution Length N I
Word Length, b Ft _ Nm a for Nm.

8 28 + 1 16 32 25T 3

916 + 1 A A C

32 232 + 1 64 128 128 VIT

64 264+1 128 256 256 \ i

*From Ref. 18.
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The word length restrictions of NTT were first considered by Rader [7I with
respect to the MNT. Rader suggested that performing long one-dimensional convolutions
by means of two-dimensional NTT could relieve these restraints. The computation of a
one-dimensional discrete convolution by means of two-dimensional ENT techniques was
analyzed by Agarwal and Burrus [23]. Their analysis reveals that a discrete one-dimen-
sional circular convolution of length N = L-M can be achieved by two-dimensional (2L, X
M) transforms. These procedures involve an expansion from a one- to a two-dimensional
convolution by repetition of sequence samples and inclusion of additional zero samnles in
a manner analogous to performing linear convolution by circular convolution. The word
length requirement with two-dimensional transform techniques is proportional to the
square root of sequence length (Va) as compared to the one-dimensional case with a
proportionality to N.

The improvement in the magnitude of the lengths of convolutions that can be
handled with the FNT is dramatic, as can be seen from a comparison of the N available
with two-dimensional transforms, indicated in Table 2, and the one-dimensional case of
Table 1. The value of Nmax is 8b2 as compared to 4b. In performing two-dimensional
convolution, the FNT can be used along the long dimension with a compatible N and a
direct or other efficient convolution procedure used on the short dimension.

Table 2- One-Dimensional Circular Convolution
Lengths Available with Two-Dimensional

FNT or RT*

Word Length, b [N(a =2 2 N(acjti} l

16 512 2048

32 2048 8192

64 8192 32768

*From Ref. 18.

Related to the word length restraint is the problem of providing a modulus large
enough to contain the magnitude of the resulting convolution. This can be quite a limit-
ing factor with respect to implementing the FNT on a minicomputer. One technique for
working with shorter word lengths involves dividing the words approximately in half into
shorter segments and convolving with half the number of bits, but it requires three con-
volutions as compared to one for full word length [18]. Another technique involves
working with two different smaller moduli, MA, M2 such that M, M2 = M, and combin-
ing the final result mod M1AM2 by the Chinese remainder theorem [20].

COMPLEX NUMBER THEORETIC TRANSFORMS

Up to this point the discussion has been limited to the application of the NTT to
the convolution of real number sequences. In many practical applications, such as in
radar and communications, the sequences to be convolved can consist of complex quanti-
ties. If each of these complex numbers is treated in rectangular form as consisting of a

12
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real and an imaginary part these can be scaled, as in the real NTT, such that they are
represented in a digital computing device as members of a set of integers with finite
bounds. In the complex case, then, the numbers that result consist of integer real and
imaginary parts and are known as complex or Gaussian integers, which are described in
Ref. 22 (pp. 178, 179).

The concepts and advantages in computation efficiency and the lack of round-off
error discussed with respect to the real number NTT are applicable to the complex num-
ber theoretic transform (CNT). The extension of number theoretic techniques to the
convolution of complex sequences has only been considered quite recently. Reed and
Truong [24] discuss the extension of the NTT to complex sequences using transforms
defined over a Galois field GF(M2) when M is prime such that -1 is a quadratic non-
residue, i.e. when x2 = -i mod M has no solution in GFjM). Agarwal and Burrus [0UJ
discuss the CNT in a complex integer field Zm, which is GF(M2), and develop relations
among the transform parameters analogous to those developed for real NTT. A more
general approach to the CNT was taken by Vegh and Leibowitz [25] who define a com-
plex NTT in a finite ring that simulates the complex integers.

The complex NTT has the same form as that presented earlier for the real-number
case. In the complex case, however, the data sequence and the powers of ae are complex
integers of the form a + jb. These complex integers are members of a set Z' where a, b
are elements of ZM. In order to prevent aliasi-ng, the real and imaginary parts of the oUL-
put of any computations modulo M must be individually bounded in magnitude by M/2,
as in the case of the real NTT. If x = al + jb, and if y = a2 + Jb2, the operations of
addition and multiplication modulo M required to carry out the computation of the CNT
within a field or ring of integers modulo M are defined as follows:

x 8 y = ((al + a2)) +J((b1 + 1b2))

x Gy = ((ala2 - b1b2)) +]((alb2 +a2 bl)).

More generally modulo M arithmetic involving Z = a + Jb, where a, b are any integers for
[[Z] J = ((Re Z)) + j((Im Z)) is defined as

[[Z1 +Z2 ]] = [[4]) I [[Z2 1]

[[Z1 Z2 ]] -= [Z1 ]] IIZ 2 1 I

The discussion of Reed and Truang [24] as well as that of Agarwal and Burrus [20]
consiedPrs the enqP where M is prime and nl70- and Z7- correspond to the finite fields
GF(M2 ) and GF(M), respectively. The existence of the field Z' (i.e., - 1 is a quadratic
nonresidue modulo M) requires that a root of 1 of order 4 not exist in ZM, or 4Y}0(M)
M - 1. Since 4IM. - 1 = 2P - 2, CNT exist for Mersenne numbers in the case of fields.
For Fermat numbers, 4IFt - 1 = 22' and no corresponding CNT exist. The complex NTT
with the CCP property in Z' will exist if and only if NIM2 - 1 [20]. In both Refs. 20
and 24, procedures for finding primitive elements for a are presented, and Ref. 24 pro-
vides a table of the simplest prime elements whose use should lead to the least hardware.
The CNT defined in the finite field GF(M2 ) lead to transforms with the CCP property,
but multiplirnfion by flowers of a is not as simple as that of the RT discussed earlier.

13
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Since N1M2- 1, maximum period Nmax of a of GF(M2 ) for M a Mersenne prime is

Nrmax = M2 _ 1 = (13P _ 1)2 _ 1 = 2P1(psl a-1 1) .

Therefore, any N = 2k for 1 < k < p + 1 divides M2
- 1 and can be the transfon jlengtb

for a CNT in a field with a power-of-2 FFT algorithm applicable to the computation.

The overflow problem for convolutions with the CNT is considered bv Reed and ' i
Truong [241. The real and imaginary parts of the data sequences must be limited in '6
magnitude to

A= [XMZA]

where [x} denotes the greatest integer less than x, in order for the CNT to lead to the
correct result for circular convolution.

The more general case of convolution with a CNT defined in the ring of complex it
integers with the real and imaginary parts modulo an integer M is considered by Vegh and A
Leibowitz [251. With the restraints for limiting the magnitude of the real and imagina ry1
components and with complex modulo arithmetic as described earlier, CNT in such rings IN 
are defined that possess the CCP property. As in the real NTT, in order to satisfy the
requirements for a CNT and have a suitable inverse transform the inverses of N and 1- 2t,
t * 0 mod N must exist in the ring and a must be of order N. A complex Mersenne I
transform can then be defined with M = Mp = 2P -1. p orime. N = p and I-t1 = (1 - l
MAlfp. To give an example of the Mersenne CNT, with input sequence z(n) a(n) + r

jb(n), we define a transform as

Z(k) =lEznk2E =l Ean J + j E 2nr) "qI

with inverse transform

Z(n) = [[N-1 z Z(k)2-nh 1 E A(k)2-n 

+J (qd E B(k)2nk))
h=0 /

where the transform domain sequence is Z(k) = AMk) + WMk). The real and imaginary
parts of the transform are NTTs of the real and imaginary parts of the input sequence,
respectively. Likewise, the real and imaginary parts of the inverse transform are inverse
NTTs of the real and imaginary parts of the transform sequence, respectively. Thus these
CNT can be carried out with binary word shifts and additions but no multiplications.
With a = 2 the transform length is limited to p. For the MNT, Rader [171 showed that,
with a -2, NTTs with an N of 2p exist. In the complex Mersenne transform, sequence
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lengths of 4p and 8p can be attained with complex a of 2j and 1 + j, respectively. The
computations involved with the use of such a are not difficult. For example the powers
of a, represented as at, are of the form 2Sa + j2sb where a, b are 0 or ±1 and s = t for
a = 2j, while s = [t/2] or the integer part of t/2 for a = I + j. Complex number theore-
tic transforms defined in a ring of integers modulo M result in multiplications by powers
of a that are simpler than those associated with the CNT in a field. A complex Fermat
number transform can also be shown to exist with the additional advantage that N is a power
of 2 and thus the efficiency of an FFT-type computation procedure can be utilized.

It should be noted that the sequence length limitations described earlier for the NTT
apply to the CNT. As in the NTT case, these concepts are applicable to longer sequences
by the multidimensional procedures described in Ref. 23.

The disclosure by Vegh and Leibowitz [25] came as a result of the present author's
suggestion that the DFT might be efficiently computed using NTT convolution. This
could either provide a faster means of computing the DFT or at least permit a device
that computed an NTT to compute a DFT without arithmetic round-off error. The basis
for the computation of the DFT by NTT methods lies in the chirp z-transform (CZT)
algorithm of Bluestein [26]. For a sequence x(n) of length N, the DFT can be represented as

N-1 N-1 2 N- 1
XMk) = L x(n)Wn7 = L X(n)(W1/ 2 )2 nh = (W1/2)k E X(n)(W1/2)n 2(w412 )(k-i)R

n=O n=O n=O

where WN = exp(- j27r/N). Thus the DFT can be computed by weighting x(n) by
Wtj2f2 in the time domain, convolving the resulting sequence with Wrn2 /2, and weighting
the resulting convolution by W/I/2 in the frequency domain. The po6wers of WN are in
general complex. The convolution required for this computation can thus be computed
by CNT techniques. All computations can be performed with modulo arithmetic as long
as the magnitudes of real and imaginary parts of the final computation are within the
bound of M/2. An example of such a DFT computation is presented in Ref. [25].

NTT vS FFT CONVOLUTION

At the present time applications of discrete convolution and correlation are per-
formed most commonly by efficient FFT techniques. It is therefore of considerable
interest to compare the efficiency, including the number and type of operations, of NTT
and FFT convolution. The most efficient form of the NTT is the RT (aX = 2). Compari-
sons between the RT and FFT were considered by Agarwal and Burrus [18].

Because of the word length required to represent a convolution without roundoff,
the RT requires approximately twice the number of bits as the FFT. Since the FFT re-
quires a real and an imaginary part, two words are required for each sequence value.
Ilefeoure, the number of bits per data point and Thus the hardware requirements are
about the same for the two transforms. For the FF1T, with real data, symmetry proper-
ties permit two transforms to be performed with one complex transform [7]. This re-
quires some additional computation but can reduce the overall computation time. In the
case of convolution with complex data, the CNT involves two computations of the ET.
This requires twice the computation time of a single RT. With twice the hardware, these
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RT can be performed simultaneously, and thus the CNT can be performed in the time of
a single RT.

Agarwal and Burrus [181 assume a straightforward FFT with b/2-bit real and
imaginary parts and a RT with b-bit modulo arithmetic. A b/2-bit complex addition/
subtraction is equivalent to a b-bit addition/subtraction modulo Ft. A b/2-bit complex
multiplication is of approximately the same complexity as that of a b-bit multiplication
modulo Ft. The dramatic advantage with the RT is with respect to multiplication by
powers of ac, which are implemented as bit shifts and subtractions, which is far simpler
than the complex multiplications required in the FFT.

For an N-point FFT in the complex number field, the number of operations consists
of N complex additions/subtractions in each iteration, or a total of N log2 N plus Nt2
complex multiplications in each array after the first, or a total of (N/2) log2 (N/2). As
described earlier, with N an integer power of 2, an NTT with a Fermat number modulus
can be performed using any FFT algorithm with WN replaced by a. Thus, the number of
modular additions/subtractions and multiplications will be the same as that in the com-
plex number field. The multiplications in the case with a = 2 involve powers of 2 which
can be performed efficiently by bit shifts and subtractions. In either implementation,
the convolution of two sequences involves the inverse transform of the product of their
transforms. The complexity of the N-transform-domain products and of the multiplica- K
tions by N' 1 required in the inverse transforms is approximately the same in both cases.

Several other points of comparison can be considered. The FFT requires storing the
powers of WN, which is unnecessary in the RT. Since the RT involves no round-off error,
there will be no round-off noise in the output of digital signal processing systems imple-
mented with this technique.

Agarwal and Burrus [18] implemented both FFT and FNT convolutions on an IBM
870/155. The FFT used involved a highly efficient mixed radix algorithm. The FNT
procedures included the RT (a = 2) plus ax = \f , as well as a two-dimensional RT. The
results of timings for the various implementations indicate speed improvements on the
order of 3 to 5 for the FNT over the FFT. It should be noted that the computer used
for the comparison does not do arithmetic modulo Fermat numbers and has unusually
high-speed multiplication relative to addition. It would appear then that in practical
applications with special purpose hardware including a modular arithmetic unit or where
multiplication is generally much slower than addition, much greater speed advantages
would result from number theoretic methods. V
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